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' ABSTRACT
P

-

_«««ul, Laplacian Smoothing Splines (LSS) are presented as generalizations of

graduation, cubic and thin plate splines. The method of generalized cross

validation (GCV) to choose the smoothing parameter is described. GCV is used

in the algorithm for the computation of LSS's. An outline of a computer

program which implements this algorithm is presented along with a description

of the use of the program. Examples in one, two and three dimensions

demonstrate how to obtain estimates of function values with confidence

intervals and estimates of first and second derivatives. Probability plots

are used as a diagnostic tool to check for model inadequacy. ,:ir;,/
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1. Motivation

A Laplacian smoothing spline (LSS) is a statistical tool used to model a
smooth but otherwise unknown function. The fitted spline provides an analytic
function which may be utilized to estimate derivatives, integrals or values of
the underlying function. For data analysis purposes a graphical display of
the fitted spline (or cross sections for multidimensional problems) often
provides insight which might otherwise remain masked by the irregularly
spaced, multidimensional and “noisy” data. The residuals, which are the
observed values of the dependent variable minus the corresponding fitted
spline values, may be utilized as an aid in model checking. A probability
plot of the residuals provides a vehicle to detect possibly discrepant
observations (outliers). With the above ideas as the eventual objective we
first elucidate the functional form of the LSS and then describe an algorithm
for its computation,

When someone mentions a line, cosine or an exponential we all have a
visual image of "feel” for the function in question. Using the following
example we hope to provide an intuitive feeling for an LSS.

In one dimension imagine a long, thin, perfectly rigid rod (a line) lying
on a frictionless plane with coordinate axes (t,z). We represent this rod as
a function of t, say g(t). Assume that we are given N points in the plane
{(t,2):(t,2)=(tq,24), i=1,...,N}. The ti are considered to be distinct and
known without error, The zj are measurements of a true but unknown function f
evaluated at t; plus some "noise" ej. The ey are independent random

variables, each having mean zero and finfite variance.




With the previous setup imagine that an ideal spring is attached to data
point (tj,zj) and to the rod (ti,g(tj)) for each i, i=1,...,N. This fixes the
springs to remain parallel to the ordinate axis. What position will the rod
g(t) assume?

Physics provides a means to answer this question. The rod will assume
the position which minimizes the energy of the springs. The energy of an
ideal spring is equal to some positive constant kj (called the spring
constant) times the square of the length it is stretched. Thus the cumulative

energy of the N springs is
N
121 ki(zi - 9(t§))? .

This is minimized when g is the least squares line (provided we restrict g to

be rigid) therefore the least squares 1ine is the position the rod will assume
if ky = kg, i=l,...,N, ko some constant. If the kj are not all equal then the
rod will assume the position of the weighted least squares line. Notice that

this spring idea provides an intuitive explanation for minimizing the residual
sum of squares in regression.

The situation is analogous in two dimensions: a thin plate of infinite
rigidity (not bendable) would assume the position of the least squares plane.
The situation in three dimensions, although not as easy to visualize, is
analogous. There are further restrictions on the ty{ which are rigorously
given in (2.6).

We have thus far assumed that the rod is rigid. This is not necessary

and may not be a good representation of the physical phenomenon under




consideration. So we relax the rigidity assumption and assume that the rod is
flexible. If zero energy were required to flex the rod then the minimum
energy position which the rod would assume is that of a function of
interpolation. Since the residuals are zero, this configuration has.zero
energy and thus is a minimum. By this explanation it is readily seen that the
function thus obtained is not unique. This anomaly will be alleviated by
requiring energy to flex the rod.

Consider the more realistic case where the rod is flexible and takes
energy to flex. The spring of a diving board is testimony to this. Note that

the bending energy of a rod is (e/02)J2(g), where p/o? is a constant and
Ja(g) = fLe(?)(x)1%x . (1.1)

Therefore the bending energy is proportional to curvature which may be
meesured as Jz(g) in (1.1).

To find the bosition which the rod will assume under these conditions is
equivalent to finding the function g which will minimize the total energy of
the system

N

iflki(zi - 9(t§))? + (p/a?) J2(9) (1.2)
or equivalently the minimizer of

N
(1/N) 121 o2k i(zq - 9(tj))2 + (o/N)d2(9) . (1.3)

The function from a certain class of functions, X, which minimizes (1.3)

can be shown to be a piecewise cubic spline. The function space X is
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rigorously defined in Wahba and Wendelberger (1980). Here X should be thought
of as a space of smooth functions which map Rd into Rl, There is much
literature about cubic splines in one dimension. To this author's knowledge
the earliest work on LSS's is that of Schoenberg (1964); other important work
on splines is given in Craven and Wahba (1979), Duchon (1976), Prenter (1975),
and Reinsch (1967).

The one dimensional case generalizes to two dimensions. In two
dimensions the splines are called thin plate splines because of the analogy of
minimizing the energy of a thin plate of infinite extent. The earliest
suggested application of thin plate smoothing splines seems to have been by
Harder and Desmarais (1972). They suggested that spring forces may be applied
at the points of interpolation. This inspired the spring analogy given here.
This spring concept is equivalent to LSS's in either one or two dimensions
(with m=2 in (2.1)). Much recent work on LSS's has been done by Wahba (see
Wahba (1979) and the references cited there).

In two dimensions Ja(g) becomes

= = 2 [2) 2%(x1,x2)
HORY SN (Z)E UZ 212 axy dxp . (1.4)
-l 09 : xz -V

J2(g) 1s proportional to the bending energy of a thin plate (under simplifying
assumptions); for details see Meinguet (1979). However, in two dimensions the

solution is no longer a piecewise cubic but rather takes the form
N
g(t) = I ci'ti2In(7y) + dg + dyx1 + d2x2 , (1.5)
- i=l

where t{ is the Euclidean distance between t and tj, that is 142 = |E-§1|2




= (t§1 - x1)? + (t32 - x2)%; tyj is the jN component of ty, j=1,2,
t= (x1,x2); ci*' and dy are constants, i=l,...,N, v=0,1,2,

To aid in understanding (1.5) the function tg21n(tg) is plotted in Figure
1.1 for EO = (0,0) and x2 = 0. Rotation of this function around the
ordinate axis and centering at the point Ei will produce the radially
symmetric function tj2In(tj). Using (1.5) an LSS is seen to be composed of a
lTinear combination of these radially symmetric functions plus a plane. The
plane has zero bending energy but generally does have nonzero spring energy.
Linear combinations of the radially symmetric functions can be forced to
interpolate the points and hence may have zero spring energy but generally
have nonzero bending energy. This tradeoff between bending and spring energy,

" or smoothness and infidelity to the data (terminology of Wahba (1979)), leads
one to consider the minimization problem of Section 2 as a generalijzation of
these ideas. The one and two dimension examples with m=2 are special cases of
this generalization.

We see that the motivation for one and two dimensional LSS's is quite
simple (at least for m=2). Attach springs to the data points, constrain them
to lie perpendicular to the independent variable space Rd, then let the curve
or surface conform by simple bending to the minimum energy configuration.

The Laplacian smoothing spline was suggested by Duchon (1976) as a
multidimensional generalization of the thin plate (or "plaques minces"), d=2,
interpolating spline. An LSS is also a multivariate generalization of the one
dimensional, d=1, “graduation" spline of Schoenberg (1964). Furthermore, the

"graduation" spline is a generalization of the familiar cubic smoothing

1 ) I A
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spline. The terminology “"laplacian smoothing spline" was suggested by

Professor I. J. Schoenberg. An explanation for using the term "Laplacian" is

given in Wahba (1979).




2. Characterization

Let zj = f(t;) + ej, 1=1,...,N. The tjeRd are known exactly. We assume
that the function f is smooth but otherwise unknown. By smooth it is meant
that the function is well approximated by a function geX; X is rigorously
defined in Wahba and Wendelberger (1980). X may be thought of as a space of
functions which.approximate well a large class of functions of which f is a
member. The e4 are independent, zero mean and finite variance random
variables with variance~-covariance matrix 02042 = c2diag(012,...,0N2). Here
o2 is an unknown constant. For example, if we know that all the variances are
equal then we may take 1.0 = 012 = ... = o§% in what follows. The 0j2 used
here are inversely proportional to the ki of Section 1, that is, kj = (aa1)'2.
The 012 may be thought of as relative weights of the measurement errors ey,
The z; are observed dependent variables in Rl and the corresponding E‘ are
independent variables in RY, i=1,...,N.

A Laplacian smoothing spline is the function g which is the solution to
the problem. |

Find geX, X a suitable function space, such that

N=1]|Dg=(z-9)1|% + (o/N)Ip(9) (2.1)

attains its minimum. Here define

N

= (2100052075 9 = (92,.-4,0M)T, 94 = 9(ti)s |06~ (2-9)|)2
(2-9)TDG-2(2-g), Dg~! = diag(oy=1,....08°!) ,

where superscript T means transpose throughout. Also,

M m! ® o amg(g)

In(g) = I [oeof L J2dxy,...dxd; (2.2)
va] al,vlseeesad,ul=-® -= 3x1%1,v,...,3%4%,v

bt s i il i a | NP



10

E = (x1,...,xd)T; M= (mggil); the ay v, +..,ad,y are the M' unique
combinations of {0,1,...,m} such that @], yteeetaq y = M,

In the case presented earlier with d=2 and m=2 we have M'=3 and
(a1,vsa2,y) takes on the M' unique values (1,1), (2,0) and (0,2). In this
case (2.2) reduces to (1.4).

The solution to the minimization problem is unique and given in (2.3).

M
¢i0m,q7i2™4(1n7;)le(d) + 2 dwou(t) (2.3)
v=

no =
—

g(t) =
1

where Io is the indicator fun.tion of even integers, that is lg(d)=1, for d
even and Io(d)=0, for d odd;
(-1)d/2+1+my(22m-1d/2(m-1)1(m-d/2)!), d even
em’d = (2.4)
r(d/2-m)/(22md/2(m-1)1), d odd
and ¢, are the polynomials of total degree less than m,

P1v Pdv

¢V(E) = py(X]seeesXd) = X1 seeXd . (2.5)

Here the ¢, are unique; piy > 0, i=1,...,d and pyy*t...+pgy < M, v=l,...,M,
+d-1

M= cm d ,. Define the M by d matrix P to have ivth element Pive Also,
2m-d > 0 and (2.6) holds.

M
T aydy(ti) = 0, i=1,...,N implies ay, = 0, v=1,...,M . (2.6)

v=] -
(Condition (2.6) requires that the matrix Ty of Section 5 step (ii) be of rank
M.) ¢ = (C1y0.0,cN)T and d = (dy,...,dy)T are obtained by solving the linear

system

N

(K + pa2D42)c + Td = (2.7)
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and

TTE =0. (2.8)

In (2.7) K is the N by N matrix with ijth element
om,dTij2™4(In(vij))le(d). In (2.7) and (2.8) T is the N by M matrix with
ivth element ou(ti). In (2.7) Dg2 is the N by N diagnal matrix with iith
entry oi2. o2 is an unknown proportionality constant which along with p is
absorbed into A using N\ = pa? to yield (2.9) from (2.7).

(K + NADOZ)S +Td =2 (2.9)

The approach of Harder and Desmarais (1972) provides us with a physical
interpretation of the parameters at least in the d=2 case. p=Nro-2 is the
plate "rigidity" which is a constant. The value of p depends on the material
and the thickness of the plate. The spring constant kj is equal to the
reciprocal of the variance or (ooj)'z. The "load" at the jth point is
Pj = pCcj = (oaj)'zrj = kjrj, where rj is the unnormalized or uqscaled residual
at that point; i.e., rj = zj - g(Ej), j=l,ece,Nor r = z - Ke - Td.

For a discussion of a more general problem and the derivation of the
solution the reader is referred to Wahba and Wendelberger (1980). We note
here that if the e; are not independent but instead have positive definite
covariance matrix proportional to I then Dg2 and Dy~! are everywhere replaced
by £ and the symmetric inverse square root E=1/2 to obtain the solution.

To this point we have assumed knowledge of the smoothness parameter i,
However it is generally unknown. Before describing a method to dynamically
choose X from the data at hand we provide an example to exhibit its influence

on the LSS.

L |
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3. Exampie 1 - Variation of the LSS with A, d=1.

A company which makes and repairs small computers wants to forecast the
number of service engineers that it will require over the next few years. To
do this requires, among other things, knowledge of the length of a servica
call. The length of a call is a function of the number of components within
the computer which must be repaired or replaced. The informatic. in Table 3.1
was collected on 24 service calls; the data are from Chatterjee and Price
{1977). We would like to fit a spline to the data in order to forecast the
length of a service call.

We fit a spline to the data using the algorithm given in Section 5. The
smoothness parameter, A, is dynamically chosen from the data using the method
of generalized cross validation (GCV). By showing the influence of X on the
LSS of this example we hope to provide a clearer understanding of the role of
GCV in choosing the smoothness parameter. The results of the following
sections will be easier to understand with this example in mind. Exactly what
the GCV choice of X is will be presented in Section 4.

Figure 3.1 shows a plot of the data and the corresponding spline for five
different values of A, Because there are only 24 observations of which only
17 have unique independent variables we should not be surprised if the GCV
estimate (to be described in Section 4) of XA, which is a large sample result,
does not perform well. The confidence intervals are calculated using method
of Wahba (1981); the formula used for their computation is given in Example 2
of Section 6.




TABLE 3.1

EXAMPLE 1 - REPAIR TIMES

Length of Calls
(Minutes)

23
29
49
64
74
87
96
97
109
119
149
145
154
166
162
174
180
176
179
193
193
195
198
205

Units Repaired
(Number)

) bed b 4t pd b Bt b Pt Bt b Pt
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Considering the brief explanation of the problem given here the GCV
choice of A, as used in Figure 3.lc, seems reasonable to use in predicting the
number of minutes spent. The GCV choice of X appears to be the most visually
pleasing and consistent with how we would expect the number of minutes spent

on a service call to be related to the number of computer components repaired.




18

4, Generalized Cross Validation

In the example of Section 3 the smoothing parameter A is unknown. To
determine an estimate of this parameter Craven and Wahba (1979) and Wahba and
Wold (1979) have suggested the use of generalized cross validation. A short
synopsis of the development of this method is given to enhance the
understanding of it,

The method of cross validation (presented here as related to LSS's) is
developed in response to the question: How well may one expect LSS's to
predict the true functional value g(E) at some point E?

Simple cross validation (SCV) suggests predicting the true functional
values of data different from that used in the analysis to assess this
predictive ability. In its simplest form this entails dividing the sample
into two pieces of similar size using one section for optimization and the
other for testing. In addition to this, in order to gain more informatfon
from the data, the two pieces may be interchanged and the optimization and
testing performed on each.

SCV is alright if there is an ample supply of data so that halving or
doubling it has little effect on the quality of the estimator. To lessen this
effect Mosteller and Tukey (1968) propose single cross validation (1CV),
(called ordinary cross validation by Wahba (1979)), which is described
syitably by them as follows:

“Suppose that we set aside one individual case, optimize for what is

left, then test on the set-aside case. Repeating this for every case

squeezes the data almost dry. If we have to go through the full
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optimization calculation every time, the extra computation may be hard to

face. Occasionally, one can easily calculate, either exactly or to an

adequate approximation, what the effect of dropping a specific and very
small part of the data will be on the optimized result. This adjusted
optimized result can then be compared with the values for the omitted
individual. That is, we make one optimization for all the data, followed
by one repetition per case of a much simpler calculation, a calculation
of the effect of dropping each individual, followed by one test of that
individual. When practical, this approach is attractive."

To describe 1CV mathematically we require some notation. Let g)(J) be
the solution to the minimization of (2.1) with the jth point removed from the
analysis. Similarly, Dc(i) is the N-1 by N-1 matrix composed of Dg4 Qith its
jth row and column removed. To “test on the set aside case" we require that
[(gx(j)(Ej) - 2j)/0;1% be small. “Repeating this for every case" and
averaging to yield aa overall test gives

VmO(2) = (1/N) 21[(9A(j)(fj) - 23)/9512 . (4.1)
1CV uses the A which’minimizes VP (A).

To minimize VuO(X) directly is not a trivial computational matter. For
each proposed value of A a system of the form (2.8) and (2.9) (of order N+M-1
instead of N+M) must be solved for each of the N values left out of the
analysis. This entails solving a linear system of order N+M-1 N times! As
noted earlier “if we have to go through the full optimization calculatfion
every time, the extra computation may be hard to face." Following the idea of
Mosteller and Tukey we seek a computational simplification for the minimizer

of Vpo(2).
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The simplified form for 1CV was first noted by Craven and Wahba (1979)
and given in a s1ightly more general form in Wahba and Wendelberger (1980).

The 1CV function may be written

N
Vmo(1) = (1/N)j21[(9x(ﬁj) - z§)/(9§(1-a5j(2)))12 . (4.2)

ajj(1) is the jth diagonal element of Ap(A) which is defined by

ait1)
An(3)7 ( I

\SXZEN)

where gy 1s the solution of (2.1). Ap(A) may be thought of as mapping the
vecior z into the smoothed values.

In this form "we make one optimization for all the data“ by calculating
g) then “followed by one repetition per case of a much simpler calculation, a
calculation of the effect of drbpping each individual." Here find ajj(}) and
use (4.2).

Evaluation of this formulation of Vh0(1) involves solving a linear system
of size N+M to find g) and one of size N to find ajj(2). This is a
considerable improvement over that of using (4.1) directly. Because of a
mathematical simplification the amount of computation needed to minimize
Vm@(A) can be substantially reduced. From a practical point of view this
makes the use of cross validation very attractive.

When applying cross validation to problems other than LSS's this last
step of finding "what the effect of dropping a specific and very small part of

the data will be on the optimized result" is very important and should not be




21

overlooked. In fact, this step often makes cross validation computationally
feasible whereas without this insight it may be impractical.

Finding the minimizer of VaO(X) requires its evaluation at different
values of A as determined by a search routine. Hence, although the
minimization is possible we need to repeatedly solve large linear systems with
the number of solution times being a function of the search routine employed.

In VpO(A) of (4.1) each deviation of gx(i)(si) from the observed value z
is treated symmetrically. This choice is arbitrary and is chosen for
simplicity. A more general approach is to weight each term of (4.1) or
equivalently (4.2) to yield

N

Vm(1) = (1/N)151W1[(9A(Ei) - z§)/(04(1-241 (1)) 2. (4.3)
Before a discussion of the choice of these weights the following defijnition is
needed.

Defini%ion:

N

Rm(1) = E(l/N)iflf(f(Ei) - oa(ti))/ai]?
is the expected weighted (by gi) mean squared error between the true function
(f) and the spline (g,) evaluated at the independent variables (Ei)' Here E
denotes mathematical expectation with respect to the error distribution of the
random errors as described in the model of Section 2.

If we want Ry(1) to be small then the generalized cross validation value

of A should be used as the smoothing parameter value. Using 1CV as motivation
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Craven and Wahba (1979) and Golub, Heath and Wahba (1979) have shown that the
A which minimizes Vyp(X) with weights
N

Wy = (l-aii(x))z/(l-N'ljflajj(x))z
is an estimate of the X which minimizes Ry(X). Using these weights in (4.3)
gives the generalized cross validation function (GCVF)

N N

Vm(}) = (I/N)iflt(gx(gi)-zi)/(ci(l-N-‘jflajj(x)))Jz . (4.4)
“ The minimizer of (4.4) is called the GCV estimate of A,
The GCVF can be rewritten as
Vm(A) = (1/N)[[Dg=1(I = Am(R))z[|2/((1/N)Tr(I-An())))? ; (4.5)

where Tr is the trace.

Wahba (1981) has proposed

e = | D57 (I-An(1))2| |2/Tr(1-Ap(1)) (4.6)

as an estimate of the error variance ¢Z. This leads us to consider
dfe = Tr(I-Ap(1)) as the degrees of freedom of error. Using these notions we

rewrite the GCVF as
Vm(X) = Nog?/dfe . (4.7)

The method of GCV may be viewed as minimizing the estimated error
variance per error degrees of freedom. This may further be thought of as a

form of parsimonious model selection.
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In the next section we see that the computation of Vn(X) is reduced to
essentially the singular value (or eigenvalue-eigenvector) decomposition of a
symmetric positive definite N-M by N-M matrix (M is usually a small integer).
The above decomposition makes it possible to form Vgu(X) by simple scalar
operations for each value of A. Thus we have taken the ideas of Mosteller and
Tukey one step further. This algorithm is much simpler than the original
analysis at essentially the cost of a one time eigenvalue-eigenvector
decomposition; i.e., changing the dependent variable (but not the independent
variables) does not necessitate another spectral decomposition. Thus, many
data sets which have identical independent variables but different dependent
variables may be analyzed quite easily and inexpensively,

When using GCV with a small sample size we may run into problems. The
most frequent small sample problem with GCV is that X = 0 or A = » is chosen
when physical considerations dictate that it should not be. X = 0 implies
that we are interpolating the dependent variable. This should be done if the W
true underlying rigidity p is zero. X equal to infinity implies that we are
fitting a polynomial of degree m-1 by least squares. This should be done if
eithgr the variance is large (relative to the dependent variable) or if the
true underlying rigidity is infinite (i.e., the true model is a polynomial).
If it is clear from other considerations that the value of A chosen is not
indicative of the actual underlying mechanism then that particular value
should not be used and the model assumptions should be checked for
violations.

The choice of m can also be made by GCV, see Lucas (1978) and Wahba and

Wendelberger (1980).
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5. Algorithm

The user must supply N independent variables, EiERd» i=l,...,N, and their
corresponding dependent variables, zieRd, i=l,...,N to compute the LSS at a
point EeRd. Assume that the model described in Section 2 holds. In
particular, assume the independent variables Ef are known without error and
the dependent variables zi consist of the true function value at ti, f(Ei),

plus "noise," ey, zj = fgti) + ej, The ej are independent with finite
variance o20i2, o2 an unknown constant.

To produce the coefficients c and g needed to evaluate the spline we
solve the linear system of equations

(X + NA*DGZ)E +Td = 2
and

TTE =0,

In this system A\* is the optimal value of the smoothing parameter X as
defermined by the generalijzed cross validation function. If A" is known then
the solution of the above linear system could be accomplished for relatively
large values of N. However, it is usually unknown and must be calculated in
order to solve the system of equations.

The method currently used to determine A* requires the solution of a
symmetric N-M dimensional eigenvalue-eigenvector problem. This is the current
computational barrier to solving problems with large numbers of observations.

The algorithm presented in Wahba and Wendelberger (1980) requires the
inversion of a matrix of order M and two eigenvalue-eigenvector decompositions

of symmetric matrices, one N by N and the other (positive definite)
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N-M by N-M. The algorithm presented here requires the solution of a
triangular system of order M, the QR-decomposition of an N by M matrix and the
singular value (or eigenvalue-eigenvector) decomposition of a symmetric
positive definite N-M by N-M matrix. This algorithm is faster and requires
fewer operations, primarily because of the replacement of one N by N
eigenvalue-eigenvector decomposition by the QR-decomposition of an N by M
matrix (M < N).
This algorithm provides for replicated points. A replicated point is one
for which there is more than one observation of the dependent variable for a
particular value of the independent variable. Let the total number of unique
(independent variable) points be Ny and define Ng = N - M - Ny. Then the
computational algorithm is as follows:
(i) Compute T4 = Dg~!T.
(i) Perform the QR-decomposition described in Dongarra, et al., (1979), of
To.
To = (Q1,Q2) x (RT,0)T .
Q2704-1KDg"1Q2
(U1,U2)0: (U1,U2)T ,

using the singular value decomposition of B, as described by Golub

(111) Calculate B

(iv) Decompose B

and Reinsch (1970) or using the spectral decomposition of B as

described by Smith, et al., (1976); where

A




Dg' -

Dg -

Ui -

Uz -

(

(v) Form

X

wl

V(r) =

e -
v

26

diagonal matrix of the eigenvalues (bj) of B, which is of
dimension N-M by N-M,
diagonal matrix of the positive eigenvalues (bj) of B, which
is of dimension Ny by Ny,

the eigenvectors of the positive eigenvalues of B, which is of
dimension (N-M) by Ny, and
the eigenvectors of the zero eigenvalues of B, which is of
dimension (N-M) by Ng.

UITQZTDa'l{s

Wi,eees,WNN)

(vi) Obtain A\* as the minimizer of

Ny NN
N_zl[wf/(bf/N + X)Jz/(itl(l/(bf/N+X)))2,
i= =

A # ®and N-M = Ny
Ny
N[2570202Tzg - wiw + A2 T (wi/!5¢/N#r))2]e (5.1)
~ - ~ - j=1
NN
(N-M=Ny+A I (1/(bj/N+1)))2,
j=1

A 2 ® and N-M # Ny

N 2570202 za/ (N-M)2, X = =

where z4 = Dg-12 .




(vii) Calculate
-
Dc'lQZUlDB-lUITQZTEC ’ A=0
Dg~1Q2u1[ (Da+NAI)-11U1TQ2T2, ,
- 0 <A< =and N-M = Ny
(5.2)

Do~ QU1 [ (Dp+NAI)=1-(NA)=2 11U TQ2T 24

+(NA)"1D5"1020272 , 0 < A < = and N-M # Ny .

@ ,
(viii) Solve the triangular system.

Rd = Q1TDg~1(z - Kc) for d,

gT 2 (dyseessy) &

“An important aspect of this method is the relatively small cost of
reconstructing a new LSS'using the identical independent variables while
changing only the dependent variables. To see this notice that the bulk of
the computational effort is in steps (i) through (iv) which do not require
knowledge of the dependent variables. These steps depend upon the independent
variables and Dy. To construct a second LSS with the same independent
variables and identical Dy we need only save the matrices Uy, Do, DB, Q1, Q2
and R. With these matrices we perform steps (v) through (viii) to produce a
spline for another set of dependent variables, say 5', with little additional
computational effort,

The fact that obtaining another spline from f' is easy requires further

consideration. [t is made possible because of the necessity to minimize the
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GCVF. This minimization provides the mechanism to eastly calculate ¢ and d in
steps (vii) and (viii) of the algorithm. If A* was somehow known a priori

then we could go right ahead and solve the linear system (2.8) and (2.9) at a

much less one time cost. However, even with A* known, if we had many new data
sets E' then for some number of them it indeed wouid be easter to do the
spectral decomposition once and for all,

Instead of saving Uj, Dg, Dg, Q1, Q2 and R we actually save QaUj, Dg, Dg,
Q1704-'K and the QR-decomposition of Ty to retrieve R, QZQZT and Q3. By using
these matrices we can perform steps (v) through (viii) quite inexpensively.
The QR-decomposition can be stored in the storage which has been allocated for
Ts plus M additional storage locations. QlTDo'lK is retained so that it is

unnecessary to reevaluate K.
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6. Example 2--Franke's Principal Test Function, d=2,

Example 2 is a Monte Carlo experiment to demonstrate the surface (d=2)
which may be obtained by using an LSS with GCV. The "principal test function"
of Franke (1979) is used as the true function f. This surface consists of two
Gaussian peaks and one Gaussian dip superimposed on a surface sloping towards
the first quadrant, The surface is defined by

f(x,y) = .75 exp -[[(9x-2)2+(9y-2)2]/4]

+ .75 exp -[[(9x+1)2/ 49]+[(9y+1)/10]]
+ .50 exp -[[(9x-7)2+(9y-3)2]/4]
- .20 exp -[(9x-4)2+(9y-7)2]

A plot of the surface f is given in Figure 6.1,

The surface is reconstructed from 169 "noisy".observations on the grid

2j-1 2k-1

G = {tj[ty=(——,=), i=13(j=1)+k; j,k=1,...,13} .

- 26 26
The "noisy" observations are

z4 = f(ty) + ej with ej-N(0,02), i=1,...,169, ¢2=(.03)2,

The ey are generated by the pseudo random number generator RAENBR at the
Madison Academic Computing Center, MACC (1978). The LSS with m=2 and the
smoothing parameter chosen by GCV is plotted in Figure 6.2. The closeness of
fit can be qualitatively seen by overlaying Figure 6.2 on Figure 6.1,

For this example the calculated oe2=(.026)2, (using (4.6)), compares
favorably with the true o2s(.03)2. Using ag? to obtain confidence intervals

for the true curve at the grid points G as in Wahba (1981) gives the 95%

confidence intervals
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9A*(Ei) t 1.960g0i(ayi(A*))1/2 , isl,...,N.

Figure 6.3 gives the cross section along the grid showing the true curve,
spline fit, observation and 95% confidence interval at each point for each
value of xj, i=1,...,13.

The number of 95% confidence intervals which cover the true surface is
known because the true surface is known. For this example 162 or 95.9% of the
intervals cover the true surface. This is a favorable comparison since the
expected number is 161. This example was not chosen because of this agreement
but rather was the only one run by prior decision.

The example given here uses points on a grid only for clarity of display.
For other d=2 Monte Carlo results see Wahba and Wendelberger (1980). The

meteorological example given there uses 1rregdlar1y spaced points.
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7. Example 3—Derivatives and Outliers, d=3.

Example 3 is a Monte Carlo experiment with d=3 and true function

f(x1,%x2,%x3)=(2M)=3/2 exp [(x32+4x22+9x32)/(-2)].

Contours of f, f' and f'' are given as the solid lines in Figures 7.4, 7.5 and
7.6.

Three hundred points Ei, i=1,...,300 are taken from a uniform
distribution in R={(x],x2,x3)|-2¢x1<2, -1<x2<1, -2/3¢x3<2/3}. The true
function f is evaluated at each of the points Ei and added to a Gaussian
pseudo random variable with standard deviation 0=.0025 to yield observation
Zzj. The peak height of f is approximately .0634. o is roughly 4% of the peak
height and therefore these data have a “"typical" noise level.

A value of m=4 was chosen for this example in order that the second
derivative of the spline could be used as an estimate of the second derivative
of f. If k IS the order of the derivative desired then 2m-2k-d nust be
positive. Here 2x4-2x2-3 = 1 > 0 and so the second derivative of the LSS will
be a good estimate of the second derivative of f; for details see Wahba and
Wendelberger (1980).

The estimate oo for this experiment is .0024 which agrees nicely with the
true value of .0025.

Contours of the true function and the fitted spline, g)~, are plotted in
Figure 7.4 for 4 values of x3. Because of the symmetry of the true surface it
was not plotted for negative values of x3. The true function and the fitted
spline are close to one another near the center of the region and this
closeness degrades as we approach the boundary in each of the three

directions.
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The contours of the derivatives of f and g,* with respect to xi, x2 and
x3 are given in Figures 7.5a, 7.5b and 7.5¢c, respectively. The contours of
the second derivatives of f and g)* with respect to x1x1, X1X2, X1X3, X2X2,
xpx3 and x3x3 are given in Figures 7.6a, 7.6b, 7.6¢c, 7.6d, 7.6e, and 7.6f,
respectively. The same qualitiative behavior is displayed by these
derivatives as of the function with the degradation occurring relatively more
rapidly as the boundary is approached. Figure 7.6f which is (32)/(aX33x3) of
f and g)* displays a particularly good fit near the center of R.

LSS's may be utilized to detect outliers in multidimensional noisy data
provided that the model of Section 2 is (nearly) appropriate. The model
requires that the observations are unbiased, j.e., that E§=f. The errors
should be additive and have a known relative error 'structure, Dg. For the
purpose of the outlier study here we shall further assume that each error ey
nas a Gaussian distribution.

To what extent the assumption of normality may be re}axed in practice
requires further study. The smoothness assumption requires that f(E) is
a smooth function of t. This rules out "cliff" functions or those with
discontinuities., By using a probability plot of the residuals the example
discussed here, which satisfies the above requirements, will be used to
demonstrate an outlier detection method.

Data sets with outliers need to be constructed. To accomplish this
choose the two points of Ei’ i=1,...,300 which are nearest to and farthest
from the origin, which is the center of the data region. These two points are

tgx = (-.056, -.032, -,042) and t} = (1.985, -.879, -.325), respectively. To
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Example 3--sol1d line is d2f/dx1dx2, dashed line is d2g/dxjdx.
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Example 3--solid Yine is d2f/dxp2, dashed line is dg/dxp<.
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construct data sets Zys, let each element of zxg equal the corresponding
element of z except for the kth, The kth element is set equal to f(tk) - so,
0=,0025. Construct 21s analogously except that the 1th element becomes

f(E] ) + so.

With the data sets Zks and 275 probability plots in Figures
7.7 and 7.8 were obtained with MINITAB, Ryan, Joiner and Ryan (1976). The
probability plot is constructed by ordering the residuals rj from smallest to
largest and plotting them against their corresponding normal scores. The ith
smallest normal score as used by MINITAB is the (i-3/8)/300.25 percentage
point of the normal or Gaussian distribution. If the error distribution that
is postulated in the model is the correct one, then the probability plot
should be nearly linear. In the data sets constructed here the error
distribution is not correct because the kth or 1th point is biased and
contains no random component.

The numbers in Figures 7.7 and 7.8 indicate how many points are plotted
at that spot on the graph. An asterisk indicates one point and a plus sign
indicates that more than 9 points are overlapping. In Figures 7.7b, ¢ and d
the outlier is identified as the point which is separate from the points which
form the line. As the assumption of unbiasedness is more strongly violated it
shows up more obviously in the plot.

Figures 7.8a-d demonstrate that this outlier detectioﬁ scheme is not
invincible and should be used in conjunction with other diagnostic checks.
The point §1 has very high Teverage because it is on the boundary of the data

regfon. In linear regression this is analogous to the points at the extremes
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Figure 7.7b: Resdiuals vs., normal scores for one outlier, f(tgx) - 60, at ty.
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Figure 7.7c: Residuals vs. normal socres for one outlier, f(ty) - 100, at tk.
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Figure 7.8a: Residuals vs. normal scores for one outlier, f(ty) + 0o, at t,.
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Figure 7.8b: Resdiuals vs. normal scores for one outlier, f(t)) + 60, at ty.
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7.8¢: Residuals vs. normal scores for one outlier, f(ty) + 100, at tj.
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of the independent variable range which also have high leverage. Because of
this the residual at 51 is not large and does not show up in the probability
piots of Figures 7.8a-d. The leverage at E1 is so large that it causes
another point, the one in the Tower left, in Figure 7.8d to appear as
descrepant. The probability plot provides a technique to check model
assumptions. However, as demonstrated here, this technique should be used in
conjunction with other diagnostic checks and with a good understanding of the
pitfalls which may be encountered.

Another diagnostic check which may be employed here is to plot the
residuals, rj, against the distance from ti to ty. This is analogous to
plotting the residuals against the independent variable in simple linear
regression. If a nonrandom pattern is observed, such as serial correlation,

then we have evidence that some model assumption is being violated. In

practice, E1 is unknown and hence it may be necessary to ao all possible
plots, 1=1,...,N. ﬁ

If a scaling Dy had been used then the scaled residuals Da‘lf would be
plotted instead of re

The procedure described here is a diagnostic method by which some of the
. model assumptions may be checked. Irregularly spaced multidimensional "noisy"
data easily mask outliers. This technique provides a means which may detect
these discrepant observations. It is presented here in the hope that it
becomes a routine method to check for model violations in an analysis which

uses LSS's.

The three dimensional results presented here are new and quite promising.
A gquantitative measurement of the goodness of fit of the estimated spline and
its derivatives to the true function is given in Wendelberger (1981). Further

Monte Carlo experiments will be performed in 3 and more dimensions.
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8. Running the program

To evaluate an LSS at any point, EeRd involves the execution of two
computer programs. The first of these, called MAIN, produces the coefficients
of the spline. The second, called EVALUATE, produces the spline, QN,m,A(E)-
If 2m-2k-d is positive EVALUATE may also be used to produce the first (k=1) or
second (k=2) derivative of gy m,A. Depending upon the particular problem at
hand the user specifies different options to be exercised by the program.
These options will be explained card by card below. Card i will be
abbreviated Ci and the commands are summarized in Table 8.1 with an example
runstream given in Table 8.3.

Cl is used to specify whether or not the coefficient arrays < and q and
the matrices X and P used to reconstruct the spline are written to uﬁit 13. X
contains the values of the independent variables and P contains the exponents
of the polynomials in (2.5), where P is rigorously defined.

To accomplish storing the spline in unit 13 C1 should have S$S13 in
columns 1 through 4. [f EVALUATE is not going to be run then the contents of
unit 13 will be unused. In this case Cl should be DONT.

Someone other than the casual user may require other arrays and matrices
which are also written to unit 13. See subroutine WRT13 in Wendelberger
(1981) for details on the arrays and matrices which are written to unit 13,
C2, to be described in the next paragraph, writes into unit 14, See
subroutines AWRT14 and BWRT14 to determine the specific values which are

written to unit 14.

T ¥ il SN T ST S WP S,




CARD

S W N

TABLE 8.1

Input for MAIN
POSSIBLE VALUES

$513, DONT

SM14, UM14, DONT

SR15, SP15, VL15, DONT

MGCV, USEL

(A)(Insert if C2 is USEL.)

VARI, STAN, SAME (Omit if C2 is UM14,)
(d,N,m) (Omit if C2 is UM14,)

Format of cards C8+1,,..,CB+N,

(z1, t17T, o1 or 07?)

(z§) (If C2 is not UM14,)

(24, t4T, o4 or 042) (If C5 is STAN or VARL.)

Format is provided on C7.
(2N, tNT, oN or op?)
YES, NO

56

FORMAT

A4
A4
A4
A4
£15.8
A4
315
18A4

(See C7)

A4
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€2 provides the ability to store certain matrices in unit 14 by using
SM14 in columns 1 through 4. The storage of these matrices makes it
unnecessary to perform the bulk of the computations if a second analysis is to
be performed. However, only the dependent variables may be changed for such a
subsequent analysis. The relative variances or standard deviations must be
identical to the run which used SM14 on C2.

UM14 in the first four columns of C2 provides for use of the matrices
which have previously been stored in unit 14. If the value of C2 is DONT then
the matrices are neither stored nor used.

C3 provides a means to retrieve certain information during the execution
of MAIN and to store this information in unit 15. The first four columns of

'~ C3 must be SR15, SP15, VL15 or DONT. If C3 is SR15 the residuals

r = (z-gN,m,a(t)) are stored in unit 15 with the format (G24.18). If C3 is

SP15 the ordinate and-abcissa for each point of the plot of the GCVF as given

in the output are stored. First the number (n) of pairs is stored in I5
format followed by the ordered pairs (i,1n(V(1031+D))), where i is an index

number i=zl,...,n and In is the natural logarithm; the format used is

(13,624.18). If C3 is VL1S then by/N, i=1,...,N-M with format (G24.18)
followed by W with with the same format are stored. If none of the above
are to be stored then C3 should be DONT.

The value of MGCY on C4 causes the GCVF to be minimized to determine A*.
If the user wants to supply a value of A then the value of C4 should be USEL.
In that case C4+ is used. C4+ should contain the value of A in (E15.8) format
to be stored in a single precision variable. If C4 is MGCV then C4+ should

not be included in the input stream.
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CS is not used if the value of C2 is UMl14. Otherwise C5 is used to input
relative variances or relative standard deviations or neither of these for the
errors of the dependent variable. If the relative variances are to be read
then C5 should be VARI; if the relative standard deviations are read then C5
is STAN; and if neither is read then C5 is SAME. The value SAME is equivalent

to that of entering all 1's as the relative variances. However, if SAME is
used then the program circumvents both multiplication and division by 1 since
Dy is simply the identity matrix.

C6 is not used if C2 is UMl14. Otherwise C6 reads in the number of i

independent variables (= dimension), the number of observations N and the

value of m to be used. The format used is (3I5).

C7 contains the format to be used to read in the data values. The format
should require at most 72 spaces including the left- and right-most
parentheses.

The data follow in C8+1 through C8+N. The data should be real Fortran
variables, each data line should contain, in order, the dependent variable,
the independent variable(s) and the relative variance or standard deviation if
used. [f C2 is UMI4 then C8+1 through C8+N should contain only the dependent
variables. They should be given in the identical sequence as the dependent
and independent variable(s) were when C2 had the value SM14.

The last card to be read is C9. It should contain one of the values YES

or NO . 1If YES then experimental confidence intervals are provided along

with degrees of freedom and an estimate of the variance (Wahba, (1981)). If

NO  then these values are neither computed nor printed.




59

To evaluate the spline (k = 0), first derivative (k = 1) or second
derivative (k = 2) the program EVALUATE is used. Previous to running EVALUATE
the program MAIN must have been run with Cl writing the coefficients to unit
13 (C1 must have been SS13). EVALUATE will then read the matrices from unit
13 and calculate the spline, its first derivative or second derivative., The
kth derivative (k = 1 or k = 2) will be calculated only if 2m-2k-d is greater
than 0. A description of the input stream for EVALUATE is given in Table
8.2 with a sample runstream given in Table 8.3.

C1 contains two integer values in (215) format. The first integer, N',
specifies the number of points EeRd at which the function is to be evaluated.
The second iifeger should be one of 0, 1 or 2 depending upon whether the
spline, first or sect.d derivative, respectively, is to be calculated.

The second card contains the format to be used to read in the N' points.
The format should require at most 72 spaces, including the left- and
right-most parentheses. The independent variables are read line by line in

the same sequence as that which was used to calculate the coefficients.

C3 must be either SV15 or DONT. To store the values in unit 15, C3
should be SV15. This causes the values followed by the corresponding
independent variable(s) to be written to unit 15. If C3 is DONT then the
values are not written to unit 15,

C3+ is used only if C3 is SV15. Then C3+ should have the format which is
to be used to write the calculated value(s) followed by the independent
variable(s) into unit 15. This format may have at most 72 spaces including

both the left- and right-most parentheses.




CARD

3+
4+1

4+N'

TABLE 8.2
Input for EVALUATION
POSSIBLE VALUES

(N*,k)

Format to read Cd+1,...,C4+N’.
SV15,D0NT

Format for 15 (Omit if C2 is DONT.)

Independent variable points
of evaluation, tT.

Format is provided in C2.
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FORMAT

215
18A4
A4
18A4

(See C2)




Sample Runstreams

@XQT SMOOTH*SPLINE.MAIN
$513
SM14
DONT
MGCV
SAME
1 24 2
(F3.10,33X,F4.0)
@ADD DATA.
YES

@XQT SMOOTH*SPLINE.EVALUATE
2000 0

(36X ,F8.4)

sV15

(2€15.8)
@ADD PLOTDATA.

@XQT SMOOTH*SPLINE.MAIN
$S13
uMl4

DONT
USEL

.00016E00
(F3.0)
@ADD DATA.
YES

@XQT SMOOTH*SPLINE.EVALUATE
200 0

(36X,F8.4)

sV15

(2€15,8)
@ADD PLOTDATA.
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TABLE 8.3

Comments

Implements the MAIN program.

Stores the spline coefficients in unit 13,
Stores matrices in unit 14,

Doesn't store other values.

Minimize the GCVF to determine A*.

The relative variances are all the same.
One dimension, 24 observations, m=2.
Format of the input data.

Inserts data from Table 3.1 in runstream.
Provide confidence intervals.

Implements the EVALUATION program.

At- 200 points evaluate the spline.

Format of the independent variables.
Store the spline and independent variable
values in unit 15,

Format of above.

Inserts abcissa points to be used for
plotting.

Implements the MAIN program.

Stores the spline coefficients in unit 13,
Uses the matrices stored in 14 by MAIN
above,

Doesn't store other values.

Use the following value of A,

Value of A to be used.

Format of the dependent varijables.

Inserts data from Table 3.1.

Provides confidence intervals.

Implements the evaluation program.

At 200 points evaluate the spline.

Format of the independent variable.

Storesthe spline and independent variable
in 15,

Format of above.

Inserts abcissa points to be used for
plotting.
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C4+1 through C4+N' contain the independent variable(s) at which the
function is to be evaluated. These should be in the format given on C2. The
independent variable(s) should be in the same sequence as used to obtain the
coefficients with the program MAIN.

The programs MAIN and EVALUATE are written in ASCII FORTRAN Level 9R1 and
are running on the UNIVAC 1100/80 computer at the University of Wisconsin.
A1l calculations are performed in double precision.

The subroutines used by the programs MAIN and EVALUATE are named:
AWRT14, BWRT14, CALC, CALD, CALRES, CHECKQ, COLOFK, CONINT, DATAR, DERIV1,
DERIV2, E, ED1, ED2, GETASI, GETBM, GETR, GETRDE, GETTHM, GRAPHV, MAKEB,
MAKETS, MINVL1, MINVL2, MQRDC, PRINT, PRNTLM, RCHECK, READ13, SPLINE, SVDB,
VARDF, VLHELP, VOFL, WHATDO, WRT13, AND WRT15. GRAPHV, MINVL1 and MINVLZ are
modeled after similar subroutines of the one dimensional smoothing spline
program written by Fleisher (1979) and running at the Madison Academic
Computing Center (MACC). A description of the program structure is given in
Wendelberger (1981).

The following LINPACK subroutines are also used by the program MAIN:
DAXPY, DCOPY, DDOT, DNRM2, DQRDC, DQRSL, DROT, DROTG, DSCAL, DSVDC, DSWAP and
DTRSL. The code for these routines is not fncluded here. It may be found in
the LINPACK USERS' GUIDE by Dongarra, Bunch, Moler and Stewart (1979). One
modification is made in the LINPACK subroutine DSVOC: the parameter MAXIT is
increased from 30 to 60. This parameter sets the maximum number of iterations
to be performed in the algorithm to determine the singular values and vectors

of B before termination due to nonconvergence. Increasing MAXIT to 60 is
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necessary because with large N, say N > 140, 30 iterations may not be large
enough for some problems. An example with N=150 fajled because MAXIT=30 was
too small. However, with MAXIT=60 example 3 with N=300 was successfully run.
In fact MAXIT=60 has proved ample for all examples tried to date. The version
of the program described here uses the singular value decomposition to obtain
the spectral decomposition of B. A new modified version uses the EISPACK
(Smith, et al., (1976)) routines DTRED2 and DTQL2 to accomplish this task at a
much reduced cost and at no loss in accuracy. This is because the singular
value decomposition does not make use of the symmetry of B. The EISPACK

routines do make use of the symmetry of B and thus the cost of the

decomposition is roughly cut in half,

alilesnatty ik aidlesmds, e
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